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Abstract

In this study, we extend the KLME approach, a moment-equation approach based on the Karhunen–Loève decomposition (KL),

developed by Zhang and Lu [An efficient, higher-order perturbation approach for flow in randomly heterogeneous porous media via

Karhunen–Loève decomposition. J Comput Phys 2004;194(2):773–94] to efficiently incorporate existing direct measurements of the

log hydraulic conductivity. We first decompose the conditional log hydraulic conductivity Y = lnKs as an infinite series on the basis

of a set of orthogonal Gaussian standard random variables {ni}. The coefficients of this series are related to eigenvalues and eigen-
functions of the conditional covariance function of the log hydraulic conductivity. We then write head as an infinite series whose

terms h(n) represent the head contribution at the nth order in terms of rY, the standard deviation of Y, and derive a set of recursive
equations for h(n). We assume that h(n) can be expressed as infinite series in terms of the products of n Gaussian random variables.

The coefficients in these series are determined by substituting decompositions of Y and h(m), m < n, into those recursive equations.

We solve the conditional mean head up to fourth-order in rY and the conditional head covariances up to third-order in r2Y . The
higher-order corrections for the conditional mean flux and flux covariance can be determined directly from the higher-order

moments of the head, using Darcy�s law. We compare the results from the KLME approach against those from Monte Carlo

(MC) simulations and the conventional first-order moment method. It is evident that the KLME approach with higher-order cor-

rections is superior to the conventional first-order approximations and is computationally more efficient than both the Monte Carlo

simulations and the conventional first-order moment method.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Although geological formations are intrinsically

deterministic, we usually have incomplete knowledge

of their properties. As a result, the medium properties

may be treated as random space functions and the equa-

tions describing flow and transport in these formations

become stochastic. Many predictive models based on
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the stochastic framework have been developed in the

past two decades [4,6,2,25].
Monte Carlo simulations and the moment-equation

approach are two widely used methods for solving

stochastic partial differential equations. However, both

can be computationally expensive for large-scale prob-

lems. Zhang and Lu [27] proposed a new approach

called the Karhunen–Loève decomposition based mo-

ment-equation approach (KLME). The application of

the Karhunen–Loève decomposition to solving stochas-
tic boundary value problems has been pioneered by

Ghanem and his coauthors [22,8–11]. The essence of
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their technique includes discretizing the independent

random process (e.g., log hydraulic conductivity) using

the Karhunen–Loève expansion and representing the

dependent stochastic process (hydraulic head or concen-

tration) using the polynomial chaos basis. The determin-

istic coefficients of the dependent process in the
polynomial chaos expansion are then calculated via a

weighted residual procedure. Roy and Grilli [20] com-

bined the Karhunen–Loève decomposition and the per-

turbation methods to solve the steady-state flow

equation and obtained the mean head to first-order in

rY and the head variance to first-order in r2Y . Zhang
and Lu [27] evaluated higher-order approximations for

the mean and (co)variance of head, on the basis of the
Karhunen–Loève decomposition of the stationary proc-

ess, i.e., log hydraulic conductivity. Specifically, with the

combination of the Karhunen–Loève decomposition

and perturbation methods, they evaluated the mean

head up to fourth-order in rY and the head (co)variance
up to third-order in r2Y . They also explored the validity
of this approach for different degrees of medium varia-

bility and various correlation scales through compari-
sons against Monte Carlo simulations. Lu and Zhang

[18] compared the KLME method with Monte Carlo

simulations (MC) and the conventional moment-equa-

tion method (CME) in terms of computational efficiency

and solution accuracy. They demonstrated that the

KLME method is computationally much more efficient

than both the Monte Carlo simulations and the conven-

tional moment approach while retaining high accuracy
(i.e., close to Monte Carlo results) at least for r2Y up to
2. However, their results indicated that for strongly he-

terogeneous media (e.g., r2Y ¼ 4:0) the head variance
computed from the KLME approach deviates from

Monte Carlo results, even though higher-order terms

(up to third-order in terms of r2Y ) have been included.
This motivates us to develop an algorithm to incorpo-

rate direct measurements for the reduction of the varia-
bility of the log hydraulic conductivity, which may

extend the applicable range of the KLME method.

The effects of conditioning on the flow and transport

in heterogeneous porous media has been studied by

many researchers [3,12,21,19,24,13,14,23,17]. One of

the effects of conditioning on measurements of the log

hydraulic conductivity is to reduce the overall uncer-

tainty of the log hydraulic conductivity (especially in
the vicinity of the conditioning points), which may lead

to the reduction of the predictive uncertainties of flow

and transport. In addition, conditioning renders the

log hydraulic conductivity field statistically inhomo-

geneous (spatially nonstationary). As a result, the eigen-

values and eigenfunctions of the conditional covariance

function may need to be solved numerically, using an

algorithm described, for example, in [8]. However, the
computational cost of this algorithm is relatively high.

At some special cases, for example, two- (or three-)
dimensional flow in rectangular (or brick-shaped) do-

mains with a separable exponential unconditional covar-

iance function, the unconditional eigenvalues and

eigenfunctions can be solved easily [27], and the condi-

tional eigenvalues and eigenfunctions can be computed

readily by taking advantage of the existing uncondi-
tional counterparts.
2. Stochastic differential equations

We consider transient water flow in saturated media

satisfying the following continuity equation and Darcy�s
law:

Ss
ohðx; tÞ

ot
þr � qðx; tÞ ¼ gðx; tÞ; ð1Þ

qðx; tÞ ¼ �KsðxÞrhðx; tÞ; ð2Þ

subject to initial and boundary conditions

hðx; 0Þ ¼ H 0ðxÞ; x 2 D; ð3Þ

hðx; tÞ ¼ Hðx; tÞ; x 2 CD; ð4Þ

qðx; tÞ � nðxÞ ¼ Qðx; tÞ; x 2 CN; ð5Þ

where q is the flux, h(x, t) is the hydraulic head, H0(x) is
the initial head in the domain D, H(x, t) is the prescribed

head on Dirichlet boundary segments CD, Ks(x) is the
hydraulic conductivity, Q(x, t) is the prescribed flux

across Neumann boundary segments CN, nðxÞ ¼
ðn1; . . . ; ndÞT is an outward unit vector normal to the
boundary C = CD [ CN, and Ss is the specific storage.
In this study, we treat Ks(x) as a random space function

while Ss as a deterministic constant. Thus, equations
(1)–(5) become stochastic partial differential equations.

Our aim is to find the conditional mean hydraulic head

and mean flux as well as their associated conditional

uncertainties.

Though the moment-equation approach is free of

assumptions on parameter distributions, for the sake

of comparison with the Monte Carlo method, we as-

sume that the hydraulic conductivity Ks(x) follows
a log normal distribution, and work with the log-

transformed variable Y(x) = ln[Ks(x)] = hY(x)i + Y 0(x),

where hY(x)i is the mean and Y 0(x) is the zero-mean

fluctuation. The conditional mean log saturated hydrau-

lic conductivity hY(x)i(c), where the superscript (c)
stands for conditional quantities, represents a relatively

smooth unbiased estimate of the unknown random

function Y(x). It may be estimated using standard geo-
statistical methods, such as kriging, which produces a

best linear unbiased estimate that honors measurements

and also provides uncertainty measures for the estimate.

The log saturated hydraulic conductivity field is condi-

tioned at some measurement points. In turn, the field
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is statistically inhomogeneous in that the two-point

covariance function CY(x,y) depends on the actual loca-

tions of two points x and y rather than their separation

distance. Therefore, the eigenvalues and eigenfunctions

of the nonstationary covariance CY(x,y), in general,

have to be solved numerically.
3. KL decomposition of log hydraulic conductivity

3.1. Unconditional log hydraulic conductivity

For the stochastic process Y(x,x) = ln[Ks(x,x)],
where x 2 D and x 2 X (a probability space), because
its covariance function CY(x,y) = hY 0(x,x)Y 0(y,x)i is
bounded, symmetric, and positive definite, it can be

decomposed into [1]

CY ðx; yÞ ¼
X1
n¼1

knfnðxÞfnðyÞ; ð6Þ

where kn and fn(x) are called eigenvalues and eigenfunc-
tions, respectively, and fn(x) are orthogonal and deter-
ministic functions that form a complete set [16]Z
D
fnðxÞfmðxÞdx ¼ dnm; n;m P 1: ð7Þ

The mean-removed stochastic process Y 0(x,x) can be
expanded in terms of fn(x) as

Y 0ðx;xÞ ¼
X1
n¼1

nnðxÞ
ffiffiffiffiffi
kn

p
fnðxÞ; ð8Þ

where nn(x) are orthogonal standard Gaussian random
variables i.e., hnn(x)i = 0 and hnn(x) nm(x)i = dnm. The
expansion in (8) is called the Karhunen–Loève (KL)

expansion. For convenience, thereafter, we suppress

symbol x in Y 0(x,x) and in other dependent functions.
The eigenvalues and eigenfunctions of a covariance

function CY(x,y) can be solved from the following Fred-

holm equationZ
D
CY ðx; yÞf ðxÞdx ¼ kf ðyÞ: ð9Þ

For some special types of covariance functions, such

as one-dimensional stochastic process with an exponen-

tial covariance function CY ðx1; x2Þ ¼ r2Y expð� j x1�
x2 j =gÞ, where r2Y and g are the variance and the corre-
lation length of the process, respectively, the eigenvalues

and eigenfunctions can be solved analytically. For cases

of two- (or three-) dimensional flow in rectangular (or

brick-shaped) domains with a separable exponential
covariance function, such as CY ðx; yÞ ¼ r2Y expð� j x1�
y1 j =g1� j x2 � y2 j =g2Þ for a two-dimensional domain
D = {(x1,x2): 0 6 x1 6 L1, 0 6 x2 6 L2}, (9) can be

solved independently for x1 and x2 directions to obtain

eigenvalues kð1Þ
n and kð2Þ

n , and eigenfunctions f ð1Þ
n ðx1Þ
and f ð2Þ
n ðx2Þ. These eigenvalues and eigenfunctions are

then combined to form the eigenvalues and eigenfunc-

tions of CY [20,27]. The summation of all eigenvalues

can be determined by setting y = x in (6) and integrating

the derived equation with respect to x over D, i.e.,P1
n¼1kn ¼ r2Y D, where D is the area of the flow domain.
In general, however, (9) has to be solved numerically.

Ghanem and Spanos [8] presented a Galerkin-type algo-

rithm for solving (9). The basic idea of this algorithm is

to choose a complete set of functions {/i(x),
i = 1,2, . . .}, express the eigenfunctions fn as truncated
(finite) linear combinations fn ¼

PN
i¼1ain/iðxÞ, and

determine coefficients ain by forcing truncating errors

to be orthogonal to /i(x), i = 1,2, . . ., N. This algorithm
can be computationally demanding because it requires

to evaluate a large number of integrations such asR
D

R
DCðx1; x2Þ/iðx1Þ/jðx2Þdx1 dx2 and

R
D/iðx1Þ/jðx2Þ

dx1 dx2. The readers are referred to Ghanem and Spanos

[8] for details.

3.2. Conditional log hydraulic conductivity

Suppose we have nY measurements Y 1; Y 2; . . . ; Y nY ,

located at x1; x2; . . . ; xnY . The conditional mean and

covariance of Y can be derived from the kriging

technique:

hY ðxÞiðcÞ ¼ hY ðxÞi þ
XnY
i¼1

liðxÞ½Y ðxiÞ � hY ðxiÞi�; ð10Þ

CðcÞ
Y ðx; yÞ ¼ CY ðx; yÞ �

XnY
i;j¼1

liðxÞljðyÞCY ðxi; xjÞ: ð11Þ

The functions li(x) are weighting functions represent-
ing the relative importance of each measurement Y(xi) in

predicting the value of hYi(c) at location x, and can be

solved from the following kriging equations:

XnY
i¼1

liðxÞCY ðxi; xjÞ ¼ CY ðx; xjÞ; j ¼ 1; 2; . . . ; nY : ð12Þ

Certainly, the covariance function computed from

(11) is no longer stationary and the eigenvalues and

eigenfunctions corresponding to this nonstationary con-

ditional covariance function have to be solved numeri-

cally. They can be obtained using the algorithm

described by Ghanem and Spanos [8]. Here we follow
Roy and Grilli�s [20] algorithm for a special case of a

two-dimensional rectangular or three-dimensional

brick-shaped domain with an unconditional separable

exponential covariance function. We will relate the con-

ditional eigenvalues kðcÞ
n and eigenfunctions f ðcÞ

n ðxÞ to
their corresponding unconditional eigenvalues kn and
eigenfunctions fn(x), which can be found easily for

unconditional separable covariances [27]. This can be
done by linking li(x) to the eigen quantities of the uncon-
ditional covariance CY. Since the set of eigenfunctions
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{fn} is complete, we can expand li(x) on the basis of {fn},
liðxÞ ¼

P1
k¼1likfkðxÞ, where lik are coefficients to be

determined. Substituting this expansion into (12), multi-

plying fm(x) on both sides, and integrating the derived

equation with respect to x over D yieldsXnY
i¼1

CY ðxi; xjÞlim ¼ kmfmðxjÞ; j ¼ 1; 2; . . . ; nY ;

m ¼ 1; 2; . . . ð13Þ

If we retain only M terms in approximating the uncon-

ditional Y 0(x) in (8), the computational effort to obtain

all lim in (13) will be the cost of solving nY · nY linear
algebraic equations forM times. Note that nY, the num-
ber of conditioning points on the log hydraulic conduc-

tivity, in general is small.

Similar to the unconditional case, the conditional

eigenvalues kðcÞ
n and eigenfunctions f ðcÞ

n ðxÞ of the condi-
tional covariance function CðcÞ

Y ðx; yÞ can be solved from
the following Fredholm equation:Z
D
CðcÞ

Y ðx; yÞf ðcÞðxÞdx ¼ kðcÞf ðcÞðyÞ: ð14Þ

To determine f (c), again we expand it in terms of the

unconditional eigenfunctions fn(x). Writing f ðcÞðxÞ ¼PM
i¼1difiðxÞ, substituting this expansion and (11) into

(14), multiplying fm(y) on the derived equation, and inte-

grating it with respect to y over domain D, one obtains

kmdm �
XM
k¼1

XnY
i;j¼1

CY ðxi; xjÞlikljm

 !
dk ¼ kðcÞdm;

m ¼ 1; 2; . . . ;M ; ð15Þ

or in a matrix form

ðA� kðcÞEÞd ¼ 0; ð16Þ

where components of A = (akm)M·M, akm ¼ kmdkm�PnY
i;j¼1CY ðxi; xjÞlikljm, and E is an M ·M identical ma-

trix. Therefore, the problem of finding the eigenvalues
and eigenfunctions of a conditional covariance function

CðcÞ
Y ðx; yÞ reduces to the problem of finding the eigen-

values and eigenvectors of an M ·M matrix. Because

CY(xi,xj) is symmetric, so is matrix A. Note that all M

eigenvalues of A are real and positive. For each eigen-

value kðcÞ
n , the corresponding eigenvector dn is then used

to construct the eigenfunction corresponding to this

eigenvalue, f ðcÞ
n ðxÞ ¼

PM
i¼1dnifiðxÞ. The computational

cost of finding conditional eigenvalues and eigenfunc-

tions in this way is much less than that of directly solv-

ing them numerically by Galerkin-type techniques. It

should be noted, however, that this procedure can be

used only if the analytical decomposition of the uncon-

ditional covariance function is possible. Otherwise, one

has to solve the conditional eigenvalues and eigenfunc-

tions directly from the conditional covariance by solving
a Fredholm integral equation numerically.
The Karhunen–Loève decomposition provides an

alternative way to generate conditional realizations.

Once the conditional eigenvalues kðcÞ
n and their corre-

sponding eigenfunctions f ðcÞ
n are found, conditional real-

izations can be generated simply by independently

sampling a certain number of values zn from the stand-
ard Gaussian distribution N(0,1) and then computing

Y 0ðxÞ �
PN

n¼1zn
ffiffiffiffiffiffiffi
kðcÞ
n

q
f ðcÞ
n ðxÞ, where N is the number of

terms needed to generate realizations with a given
accuracy.

Since eigenvalues

ffiffiffiffiffiffiffi
kðcÞ
n

q
and their corresponding

eigenfunctions f ðcÞ
n ðxÞ always come together, in the fol-

lowing derivation, we define new functions ~f nðxÞ ¼ffiffiffiffiffiffiffi
kðcÞ
n

q
f ðcÞ
n ðxÞ and the tilde over fn is dropped for

simplicity.
4. KL-based conditional moment equations

4.1. Conditional head moments

Since the dependent variable h(x, t) is a function of

the input variability r2Y , one may express h(x, t) as an
infinite series as hðx; tÞ ¼

P1
m¼1h

ðmÞðx; tÞ. In this series,
the order of each term is with respect to rY, the standard
deviation of Y(x). We also expand Ks(x) = exp[Y(x)] =

exp[hY(x)i + Y 0(x)] = KG(x)[1 + Y
0 + (Y 0)2/2 + � � �].

After combining (1) and (2), substituting expansions of
h(x, t) and Ks(x), and collecting terms at separate order,

we obtain

r2hð0Þðx; tÞ þ rhY ðxÞi � rhð0Þðx; tÞ þ gðx; tÞ
KGðxÞ

¼ Ss

KGðxÞ
ohð0Þðx; tÞ

ot
; ð17Þ

hð0Þðx; 0Þ ¼ H 0ðxÞ; x 2 X; ð18Þ

hð0Þðx; tÞ ¼ H 1ðx; tÞ; x 2 CD; ð19Þ

niðxÞ
ohð0Þðx; tÞ

oxi
¼ �Qðx; tÞ=KGðxÞ; x 2 CN ð20Þ

and for mP 1

r2hðmÞðx; tÞ þ rhY ðxÞi � rhðmÞðx; tÞ

¼ Ss

KGðxÞ
Xm
k¼0

ð�1Þk

m!
� ½Y 0ðxÞ�k oh

ðm�kÞðx; tÞ
ot

�rY 0ðxÞ � rhðm�1Þðx; tÞ � gðx; tÞ
m! KGðxÞ

½�Y 0ðxÞ�m;

ð21Þ

hðmÞðx; 0Þ ¼ 0; x 2 D; ð22Þ

hðmÞðx; tÞ ¼ 0; x 2 CD; ð23Þ



Z. Lu, D. Zhang / Advances in Water Resources 27 (2004) 859–874 863
rhðmÞðx; tÞ � nðxÞ ¼ � Qðx; tÞ
m! KGðxÞ

½�Y 0ðxÞ�m; x 2 CN:

ð24Þ
Eqs. (17)–(20) are the governing equations for the

zeroth-order conditional mean head. In the conven-

tional moment approaches, the higher-order corrections

(usually up to second-order) for the conditional mean

head are solved from (21)–(24). The first-order (in terms

of r2Y ) head covariance can be derived from (21)–(24) by
setting m = 1, multiplying the derived equation for
h(1)(x, t) by h(1)(v,s), and taking the conditional ensem-
ble mean.

In the KLME approach, we further assume that

h(m)(x, t) can be expanded in terms of orthogonal Gaus-

sian random variables nn, n = 1,2, . . .

hðmÞðx; tÞ ¼
X1

i1;i2;...;im¼1

Ym
j¼1

nij

 !
hðmÞi1;i2;...;imðx; tÞ ð25Þ

for example,

hð1Þ ¼
X1
i¼1

hð1Þi ni; hð2Þ ¼
X1
i;j¼1

hð2Þij ninj;

hð3Þ ¼
X1
i;j;k¼1

hð3Þijk ninjnk; ð26Þ

where hðmÞi1;i2;...;imðx; tÞ are deterministic functions to be
determined. Substituting the decomposition of Y 0(x)

and h(m)(x, t) recursively into (21)–(24), we obtain the

governing equations for hðmÞi1;i2;...;imðx; tÞ. For example, to
determine hð1Þn ðx; tÞ, one substitutes the expansion of
Y 0(x) and hð1Þðx; tÞ ¼

P1
n¼1nn hð1Þn ðx; tÞ into Eqs. (21)–

(24) with m = 1, uses the orthogonality of set {nn}, and
obtains the governing equations with initial and bound-

ary conditions for hð1Þn ðx; tÞ:

r2hð1Þn ðx; tÞ þ rhY ðxÞi � rhð1Þn ðx; tÞ

¼ Ss

KGðxÞ
ohð1Þn ðx; tÞ

ot
� fnðxÞ

ohð0Þðx; tÞ
ot

" #

�rfnðxÞ � rhð0ÞðxÞ þ gðx; tÞ
KGðxÞ

fnðxÞ; ð27Þ

hð1Þn ðx; 0Þ ¼ 0; x 2 D; ð28Þ

hð1Þn ðx; tÞ ¼ 0; x 2 CD; ð29Þ

rhð1Þn ðx; tÞ � nðxÞ ¼ Qðx; tÞ
KGðxÞ

fnðxÞ; x 2 CN: ð30Þ

By recalling the definition of fn(x), it is seen that all driv-

ing terms in Eqs. (27)–(30) are proportional to

ffiffiffiffiffiffiffi
kðcÞ
n

q
,

which decreases as n increases. This ensures that the

magnitude of contribution of hð1Þn ðx; tÞ to h(1)(x, t) de-
creases with n in general. This also clearly indicates that
hð1Þn ðx; tÞ are proportional to rY, the standard deviation
of the log hydraulic conductivity. Derivation of high-

er-order terms hðmÞi1;i2;...;imðx; tÞ for m > 1 can be found in
[27].

We solve hðmÞi1;i2;...;imðx; tÞ up to fifth-order, i.e., h
(0)(x, t),

hð1Þn ðx; tÞ; hð2Þij ðx; tÞ; hð3Þijk ðx; tÞ; hð4Þijklðx; tÞ, and hð5Þijklmðx; tÞ.
Once they are solved, we can directly compute the con-
ditional mean head and head covariance without solving

equations for the head covariance and the cross-covari-

ance between the log hydraulic conductivity and the

head, which are required in the conventional moment-

equation approaches. Up to fifth-order in rY, the head
is approximated by

hðx; tÞ �
X5
i¼0

hðiÞðx; tÞ ð31Þ

which leads to an expression for the conditional mean

head

hhðx; tÞi �
X5
i¼0

hhðiÞðx; tÞi

¼ hð0Þðx; tÞ þ
X1
i¼1

hð2Þii ðx; tÞ þ 3
X1
i;j¼1

hð4Þiijjðx; tÞ:

ð32Þ

It is seen that hh(0)(x, t)i � h(0)(x, t) is the conditional

mean head solution up to first-order in rY. The second
term on the right-hand side of (32) represents the sec-

ond-order (or third-order) correction to the first-order

conditional mean head, and the third term is the

fourth-order (or fifth-order) correction. From (31) and

(32), one can write the head perturbation up to fifth-

order as

h0ðx; tÞ ¼ hðx; tÞ � hhðx; tÞi

�
X5
i¼1

hðiÞðx; tÞ � hhð2Þðx; tÞi � hhð4Þðx; tÞi; ð33Þ

where hhð2Þi ¼ h
P1

i;j¼1ninjh
ð2Þ
ij i ¼

P1
i¼1h

ð2Þ
ii and hhð4Þi ¼

3
P1

i;j¼1h
ð4Þ
iijj. This leads to the head variance up to

third-order in terms of r2Y (or, sixth-order in rY)

r2hðx; tÞ ¼
X1
i¼1

½hð1Þi ðx; tÞ�2 þ 2
X1
i;j¼1

½hð2Þij ðx; tÞ�
2

þ 6
X1
i;j¼1

hð1Þi ðx; tÞhð3Þijj ðx; tÞ

þ
X1

i;j;k;l;m;n¼1
hnijklmni 2hð1Þi ðx; tÞhð5Þjklmnðx; tÞ

h

þ 2hð2Þij ðx; tÞh
ð4Þ
klmnðx; tÞ þ hð3Þijk ðx; tÞh

ð3Þ
lmnðx; tÞ

i
� 2hhð2Þðx; tÞihhð4Þðx; tÞi: ð34Þ

where nijklmn = ninjnknlnmnn for convenience. Due to
orthoganality of the set {nn, n = 1,2, . . .}, the term
hninjnknlnmnni can be evaluated easily by counting the
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occurrance of each n and using relationships hn2kþ1i i ¼ 0
and hn2ki i ¼ ð2k � 1Þ!!. Here the first term in the right-

hand side of (34) represents the head variance up to

first-order in r2Y , the second and third terms are sec-
ond-order (in r2Y ) corrections, and the rest terms are
the third-order (in r2Y ) corrections. The expression for
the head covariance can be found in [27].

4.2. Conditional flux moments

Analogous to the head moments, we write

q = q(0) + q(1) + � � �, and qðmÞ ¼
P

q
ðmÞ
i1i2���imn1n2 � � � nm. Once

we solved head terms hðmÞi1i2���im , the corresponding flux

terms q
ðmÞ
i1i2���im can be computed directly from hðmÞi1i2���im based

on the Darcy�s law (see Appendix A). The conditional
mean flux up to fourth-order can be written as

hqðx; tÞi �
X5
i¼0

hqðiÞðx; tÞi

¼ qð0Þðx; tÞ þ
X1
i¼1

q
ð2Þ
ii ðx; tÞ þ 3

X1
i;j¼1

q
ð4Þ
iijjðx; tÞ;

ð35Þ

and the conditional flux variance up to third-order in

terms of r2Y is given as

r2q;sðx; tÞ ¼
X1
i¼1

½qð1Þi;s ðx; tÞ�
2 þ 2

X1
i;j¼1

½qð2Þij;sðx; tÞ�
2

þ 6
X1
i;j¼1

qð1Þi;s ðx; tÞq
ð3Þ
ijj;sðx; tÞ

þ
X1

i;j;k;l;m;n¼1
hnijklmni 2qð1Þi;s ðx; tÞq

ð5Þ
jklmn;sðx; tÞ

h

þ 2qð2Þij;sðx; tÞq
ð4Þ
klmn;sðx; tÞ þ qð3Þijk;sðx; tÞq

ð3Þ
lmn;sðx; tÞ

i
� 2hqð2Þs ðx; tÞihqð4Þs ðx; tÞi; s ¼ 1; 2; . . . ; d:

ð36Þ

where d is the space dimensionality, subscripts r and s

represent the terms corresponding to the rth and sth

components of the conditional flux fields.
5. Illustrative examples

In this section, we attempt to examine the validity of

the KL-based moment-equation approach in computing

higher-order head moments for flow in hypothetical

saturated porous media conditional to some direct

measurements of the log hydraulic conductivity, by
comparing model results with those from Monte

Carlo simulations. Meanwhile, we will also demonstrate

the effect of conditioning on reducing prediction

uncertainties.

We consider a two-dimensional domain in a satu-

rated heterogeneous porous medium (Fig. 1). The flow
domain is a square of a size L1 = L2 = 10 [L] (where L

is any consistent length unit), uniformly discretized into

40 · 40 square elements. The no-flow conditions are pre-
scribed at two lateral boundaries. The hydraulic head is

prescribed at the left and right boundaries as 10.5 [L]
and 10.0 [L], respectively, which produces a mean flow

from the left to the right. The unconditional mean of

the log hydraulic conductivity is given as hYi = 0.0
(i.e., the geometric mean saturated hydraulic conductiv-

ity KG = 1.0 [L/T], where T is any consistent time unit).

For simplicity, it is assumed in the following examples

that the unconditional log saturated hydraulic conduc-

tivity Y(x) = lnKs(x) is second-order stationary with a
separable exponential covariance function

CY ðx; yÞ ¼ CY ðx1; x2; y1; y2Þ

¼ r2Y exp � j x1 � y1 j
g

� j x2 � y2 j
g

� �
ð37Þ

where g is the unconditional correlation scale. In this
case, the unconditional eigenvalues kn, n = 1,2, . . . ,
and their corresponding eigenfunctions fn, n = 1,2, . . . ,
can be computed analytically [27]. Zhang and Lu [27]
discussed the effect of the correlation length on compu-

tational costs and solution accuracy. Here we fix g = 4.0
unless otherwise stated.

To investigate the effect of conditioning, and the

accuracy and efficiency of the KLME approach, we de-

sign five cases. The first case is a unconditional one with

unconditional variance of r2Y ¼ 2:0 and a correlation
length of g = 4.0. This case is used for the purpose of
illustrating the effect of conditioning by comparing to

the second case, where four conditioning points have

been added. The locations of these conditioning points

are shown in Fig. 1 as solid cycles. The third and fourth

cases are respectively similar to Case 1 and Case 2, but

with a shorter correlation length g = 2.0. These two
cases are used to investigate the dependence of the effect
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of conditioning on the correlation length. In the fifth

case, we modify Case 2 by increasing the variability of

Y to r2Y ¼ 4:0 and adding five more conditioning points
(nine conditioning points in total, see Fig. 1). With such
a high variability, Zhang and Lu [27] have showed that,

up to third-order in r2Y , the KLME method is not appli-
cable without conditional points.

For the conditional KLME method, we first solve for

the unconditional eigenvalues and eigenfunctions. Fig. 2

shows the unconditional eigenvalue kn as a function of
index n. Also shown in the figure is the accumulative

value of the unconditional eigenvalues. Given r2Y ¼ 2:0
and the area of flow domain (100 L2), the accumulative

unconditional eigenvalues should be
P1

n¼1kn ¼ r2Y D ¼
x1

x 2
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Fig. 3. Examples of unconditional eigenfunctions
200:0. It is seen from the figure that the first 100 terms

account for about 90% of the total variability. Fig. 3

illustrates some examples of unconditional eigenfunc-

tions. Note that the series of eigenvalues is monotoni-

cally decreasing and the characteristic length of the

unconditional eigenfunctions fn is also decreasing as n
increases.

Once the unconditional eigenvalues and eigenfunc-

tions are calculated, the conditional eigenvalues and

eigenfunctions are computed using the algorithm de-

scribed in Section 3. The conditional eigenvalues are

also shown in Fig. 2. Note that the summation of all

conditional eigenvalues is much less than that of the

unconditional case, indicating a smaller variability of
the conditional Y. Fig. 4 illustrates some of conditional

eigenfunctions. Unlike the unconditional eigenfunc-

tions, the characteristic scales of conditional eigenfunc-

tions are not monotonically decreasing as the mode

number n increases. We then solve conditional head

terms h(m) up to fifth-order and compute the conditional

mean head and mean flux up to fourth-order in terms of

rY, and the conditional head variance and flux variance
up to third-order in terms of r2Y .
For each case, we conduct Monte Carlo simulations.

Using the sgsim code in GSLIB [15], we first generate a

two-dimensional unconditional random field (realiza-

tion) on a grid of 41 · 41 nodes, with a specified mean
and a covariance function , i.e., (37), and consider this

field as a ‘‘true’’ field. The values of this field at condi-

tioning points are taken as ‘‘measurements’’. We then
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: (a) f1(x); (b) f5(x); (c) f10(x) and (d) f20(x).
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Fig. 4. Examples of conditional eigenfunctions: (a) f ðcÞ
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generate 5000 realizations conditioned on measurement

values, again, using sgsim. The quality of these condi-
tional realizations is examined by comparing the mean

and covariance of the sampled realizations (solid con-

tour lines) with the mean and covariance computed

from kriging (dash-dotted lines), as illustrated in Fig.

5. It is seen from the figure that the conditional sample

mean and variance resulted from generated realizations

are in excellent agreement with those from the kriging

method. The steady-state, saturated flow equation is
solved for each realization of the log hydraulic conduc-

tivity, using the Finite-Element Heat- and Mass-Trans-

fer code (FEHM) by Zyvoloski et al. [28]. Then, the
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Fig. 5. Comparisons of: (a) conditional mean and (b) conditional variance o

Carlo simulations (solid curves) and the kriging method (dashed curves).
sample statistics of the flow fields, i.e., the conditional

mean predictions of head and flux as well as their asso-
ciated conditional uncertainties (variances), are com-

puted from these realizations. These statistics are

considered the ‘‘true’’ solutions that are used to compare

against the results from the proposed higher-order con-

ditional KLME approach.

We also compare the results from the KLME ap-

proach with those from the conventional first-order mo-

ment-equation-based approach (CME) [26], which is
applicable to general nonstationary fields, including

those resulted from conditioning. The input conditional

covariance to the conventional moment method can be
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f the log hydraulic conductivity for Case 2, computed from the Monte
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computed either from conditional realizations or from

the kriging method. It has been verified that the impact

of different choices of the input covariance is minimal.

As a result, in this study we use the conditional covari-

ance of the log hydraulic conductivity computed from

the kriging method as the input covariance for the
CME method. In comparing results from the CME

and the KLME methods, it is expected that, while the

higher-order approximations of the conditional head

variance and flux variance from the KLME approach

should be close to Monte Carlo results, their first-order

approximations shall be almost identical to those from

the CME approach, if n1, the number of terms included

in h(1), is sufficiently large. That is to say, the closeness
of the first-order variances derived from the conven-

tional moment-equation-based approach and from the

KLME approach is an indicator showing if n1 is large

enough.
6. Results and discussions

6.1. Effect of conditioning

The effect of conditioning is twofold. First, condition-

ing locally reduces the uncertainty of the log hydraulic

conductivity around the conditioning points and thus

reduces the overall predictive uncertainty of the head

and flux. Fig. 6 compares the mean head and the head

variance derived fromMonte Carlo simulations for Case
1 (solid curves, unconditional) and Case 2 (dashed

curves, conditional). Under the given boundary condi-

tions, the mean head for the unconditional case exhibits

a linear trend from the left to the right because the log

hydraulic conductivity field is statistically homogeneous.

For the conditional case, the hydraulic conductivity field

is nonstationary and the flow field is no longer uniform.

It is seen from the figure that overall the head variance
has been significantly reduced, even though there are
10
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Fig. 6. The unconditional (Case 1, solid curves) and conditional (Case 2, da

variance.
only four conditioning points in Case 2. The spatial pat-

tern of the head variance distribution for the uncondi-

tional case under the given boundary conditions is

symmetric with respect to lines x1 = 5.0 and x2 = 5.0.

Conditioning distorts such a symmetry. In this example,

the head uncertainty in the downstream direction has
been considerably reduced while such a reduction of

the head uncertainty in the upstream direction is rela-

tively small. This could be ascribed to the spatial distri-

bution of the mean log hydraulic conductivity field (see

Fig. 5). Numerical experiments show that the amount of

reduction of the head uncertainty is reversed if we rotate

the mean log hydraulic conductivity field by 180�. An-
other important observation from the figure is that con-
ditioning may increase the head variability in some

regions, for example in the left-upper corner of Fig.

6(b). However, conditioning does reduce the overall

head variability. The average head variability (nodal

average) for the unconditional case (Case 1) is 5.43 ·
10�3, comparing to 3.11 · 10�3 for the conditional case
(Case 2).

However, such a reduction on the head variability
may depend on the correlation length of the log hydrau-

lic conductivity. Intuitively, when the correlation length

is large, the region of influence of each individual condi-

tioning point will be large, which leads to relatively large

reduction on overall head variability. Fig. 7 compares

the mean head and the head variance derived from

Monte Carlo simulations for Case 3 and Case 4, where

the correlation length has been reduced to g = 2.0. Com-
paring to Fig. 6, the reduction on the head variability is

not so significant. In fact, the average head variance for

the unconditional case (Case 3) is 3.0 · 10�3 and that for
the conditional case (Case 4) is 2.84 · 10�3.
The second effect of the conditioning is that it allows

us to apply the KLME method to the cases with a high

variability of the unconditional log hydraulic conductiv-

ity. Although conditioning may reduce the correlation
length of the log hydraulic conductivity, which in turn
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requires more terms to approximate the log hydraulic

conductivity in the truncated KL expansion, our numer-

ical examples show that adding a few conditioning

points makes it possible to solve the statistical moments

for flow in highly heterogeneous media. This will be dis-

cussed in detail in the following sections.

6.2. Accuracy of KLME approach

Comparisons of model results from Monte Carlo

simulations (MC), the conventional moment-equation

approach (CME), and the KLME approach with differ-

ent orders of approximations for Case 2 are depicted in

Figs. 8–11. Fig. 8a shows a contour map comparing the

mean head derived from the Monte Carlo simulations
and the KLME method with fourth-order in terms of

rY, and Fig. 8b compares the head variance from Monte
Carlo simulations and the KLME method with a third-

order approximation in terms of r2Y . It should be noted
that the difference between two quantities plotted in a

contour map has been exaggerated and the actual differ-

ence is much smaller. The rest of figures show the quan-

tities of interest along the profile x2 = 5.0. It is seen that
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Fig. 8. Comparisons of: (a) the conditional mean head and (b) conditional h

and the KLME method to third-order approximation in terms of r2Y (dashe
the mean heads (Fig. 9a) and mean fluxes (Fig. 10) com-

puted from different approaches do not have significant

difference due to the particular boundary conditions in

our examples. However, the head variance and flux var-

iance derived from various approaches are quite differ-

ent. Fig. 9b shows that the first-order approximations

of the head variance from both CME and KLME are
very close, indicating that approximating Y 0 using 100

terms is adequate for this case. Note that both first-or-

der approximations significantly deviate from the Monte

Carlo simulation results, implying that higher-order cor-

rections are needed. When higher-order terms are

added, the head variance is getting closer to that from

Monte Carlo simulations. In fact, both the second-order

and third-order solutions are very close to the Monte
Carlo results.

Fig. 11 delivers the similar information. Note that the

first-order flux variance from both the CME and the

KLME methods are very close and they are only about

half of the value derived from Monte Carlo simulations.

This strongly suggests that higher-order corrections for

the flux covariance be needed for transport simulations,

because the particle displacement covariances, which
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describe the spreading of a plume, are highly related to

the flux covariance. The figure also demonstrates that

adding high-order corrections can significantly improve

results. Furthermore, it seems that more terms are re-
quired for approximating flux variances than for the

head variance.

Figs. 12–15 illustrate such comparisons for

Case 5, i.e., the conditional simulation results for a
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870 Z. Lu, D. Zhang / Advances in Water Resources 27 (2004) 859–874
unconditional variance r2Y ¼ 4:0. Previous study [27] has
shown that, at such a high variability of the log hydrau-

lic conductivity, the unconditional KLME method does

not work at least up to third-order in r2Y . By adding only
nine conditioning points, the results from the KLME

method are getting close to Monte Carlo results. It is

shown from Fig. 13b that the first-order approximation

of the head variance from both the CME and the
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KLME methods deviate substantially from the head
variance from the Monte Carlo simulations. Including

higher-order corrections from the KLEM method im-

proves the results significantly. With nine conditioning

points in this case, the flux moments derived from the

first-order CME method and from the KLME method

with different order of approximations are sufficiently

close to these from the Monte Carlo simulations. How-

ever, the computational cost for the first-order CME is
much higher than that of the KLME method with the

first-order approximation, as discussed in detail in the

next section.

Fig. 16 compares the mean head and head variance

obtained from the Monte Carlo method and the KLME

method for Case 4 (the correlation length g = 2.0),
where the profile is taken at x2 = 7.5 (passing two condi-

tioning points). Due to the relatively short correlation
length, more terms are required in the truncated KL

expansion to approximate the log hydraulic conductivity
x1

σ h2

0 2 4 6 8 10
10

10.1

10.2

10.3

10.4

10.5

MC (5,000)
CME, 0th order
CME, 2nd order
KLME, 2nd order
KLME, 2nd order
KLME, 4th order

(a)

Fig. 16. Comparisons of (a) the conditional mean head, and (b) conditional

MC method, the CME method, and the KLME method with different orde
field. In this case, we retained 1000 terms in the KL
expansion, which apparently is adequate by noticing

that the first-order approximation of the head variance

from the KLME method is almost identical to the re-

sults from the first-order CME method. However, both

first-order solutions deviate from the Monte Carlo re-

sults significantly. By adding higher-order terms in the

KLME method, the head variance becomes much closer

to the MC results.

6.3. Computational efficiency of the KLME approach

The advantage of the proposed KLME approach lar-

gely depends on how many terms are required to

approximate hðmÞi1;i2;...;im . For Cases 2 and 5 shown above

(g = 4.0), the maximum indices for hð1Þi ; hð2Þij ; hð3Þijk ; hð4Þijkl,

and hð5Þijklm are 100, 10, 10, 5, and 5, respectively, i.e.,
index i in hð1Þi running up to 100 and each index in hð2Þij

running up to 10, and so on. For instance, the equations
x1

σ h2

0 2 4 6 8 10
0

0.002

0.004
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head variance along the profile x2 = 7.5 for Case 4, computed from the

rs of approximations.
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for term hð1Þi , (27)–(30), need to be solved for 100 times,

and the equations for hð2Þij need to be solved for 55 times

(noting that hð2Þij is symmetric with respect to indices i

and j). The total number of times to solve similar equa-

tions to obtain hð1Þi ; hð2Þij ; hð3Þijk ; hð4Þijkl, and hð5Þijklm will be

100 + 55 + 220 + 70 + 75 = 520, which is much less than
the number of Monte Carlo simulations (at the order of

few thousands) required and also less than the number

of times for solving the CYh(x,y) and Ch(x,y) covariance

equations (2N = 3362, in this case) in the first-order

CME approach. For case 4 (g = 2.0), we have retained
1000 terms in approximating h(1), which increases the

computational costs from 520 (in terms of the number

of time to solve sets of linear algebraic equations with
N unknowns) for Case 2 to 1420, which is still less than

computational costs required for the conventional ME

method and the MC simulations. In addition, the grid

resolution for the KLME method is the same as that

for the CME method but can be much coarser than that

for the MC simulations. Therefore, the KLME ap-

proach (even after including some higher-order terms)

could be computationally more efficient than both the
first-order CME approach and the MC simulations.
7. Summary and conclusions

Although the moment-equation approach based on

the Karhunen–Loève decomposition (KLME) of the

unconditional covariance of the log hydraulic conduc-
tivity is computationally much more efficient than both

the Monte Carlo simulations and the conventional mo-

ment-equation method, our previous study demon-

strated that the KLME method, up to third-order in

r2Y , is not suitable for simulating flow in a medium with
extremely strong heterogeneity, for example, r2Y ¼ 4:0.
In this study, we extended the KLME approach to take

advantage of existing direct measurements (condition-
ing) of the log hydraulic conductivity and developed

an algorithm to incorporate such measurements into

the unconditional KLME method developed earlier.

To incorporate direct measurements, one may compute

conditional covariance of the log hydraulic conductivity

using, for example, the kriging method and then directly

decompose the conditional covariance to calculate the

conditional eigenvalues and eigenfunctions correspond-
ing to the conditional covariance, which in general

should be solved numerically and involves evaluation

of a large number of domain integrations. In the case

that the unconditional covariance CY is separable, and

the flow domain is rectangular (or brick-shaped in

three-dimensional cases) the unconditional eigenvalues

and eigenfunctions can be derived with relative ease

and conditional eigenvalues and eigenfunctions then
can be computed from unconditional ones with just a

marginal increase in computational costs.
Once the conditional eigenvalues and eigenfunctions

have been solved, the exactly same procedure as pre-

sented in [27] can be followed: writing the dependent

variable, the hydraulic head, as h ¼
P

hðnÞ, expanding
h(n) into a series in terms of the product of n standard

Gaussian random variables used in expanding Y, and
obtaining sets of equations to determine the determinis-

tic coefficients in these expansions. After these coeffi-

cients are solved, the mean head and head covariance

can be computed directly without solving any additional

equations. Our approach differs from polynomial chaos

expansions in that h(n) also satisfies the nth-order mo-

ment equations. Higher-order approximations of the

flux can be determined from hðmÞi1;i2;...;im using Darcy�s
law. In this study, we used the conditional KLME

method to evaluate the mean quantities (head and flux)

to fourth-order in rY and the head (and flux) covariance
up to third-order in r2Y . We demonstrated the KLME
approach with some examples of steady-state saturated

flow in a two-dimensional rectangular domain and

compared our results with those from Monte Carlo

simulations and from the conventional first-order
moment-equation approach.

The moment-equation approach based on the Karh-

unen–Loève decomposition (KLME) allows us to evalu-

ate higher-order flow moments with relatively small

computational efforts. To first-order in the variance of

the log hydraulic conductivity (i.e., r2Y ), the conditional
KLME approach gives results that are consistent with

those by the conventional moment-equation approach
(CME). Owing to the rapid convergence of the first-

order head term, i.e., expansion (25), the first-order

KLME approach is generally much more efficient than

the CME approach for the cases considered in this

study. When the variability of the log hydraulic conduc-

tivity is relatively large, first-order approximations are

not accurate enough and high-order corrections are

needed. These higher-order corrections can be derived
from the KLME method with relatively small computa-

tional costs.

When the porous media are strongly heterogeneous,

say r2Y ¼ 4:0, it has been shown [27] that the results from
the KLME method deviate significantly from Monte

Carlo results, even if up to third-order corrections have

been included. However, incorporating a few direct

measurements of the log hydraulic conductivity renders
the KLME method applicable. Conditioning not only

reduces the overall predictive uncertainty, but also ex-

tends the applicable range of the KLME approach to

highly heterogeneous media.

The effect of conditioning depends on the number of

conditioning points and their spatial distribution. In

addition, the correlation length also has some impact

on the effect of conditioning. For cases with a relatively
large correlation length, the reduction on the overall

predictive uncertainty will be more significant.
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Appendix A

Writing q(x, t) = q(0) + q(1) + � � �, h(x, t) = h(0) + h(1) +
� � �, and Ks(x) = KG[1 + Y

0 + � � �], substituting these

expressions into equation (2), and collecting terms at

separate order yields a general form

qðnÞðx; tÞ ¼ �KGðxÞ
Xn
k¼0

½Y 0ðxÞ�k

k!
rhðn�kÞðx; tÞ ðA:1Þ

Substituting decompositions of Y 0(x) and h(i)(x, t),

i ¼ 1; n, into (A.1) and taking its expectation, we have

qðnÞðx; tÞ ¼ �KGðxÞ
X1

i1;i2;...;in¼1
ni1ni2 . . . nin

�
Xn
k¼0

1

k!

Yk
j¼1

fijðxÞ
 !

rhðn�kÞ
ikþ1;...;inðx; tÞ

¼
X1

i1;i2;...;in¼1
ni1ni2 . . . ninq

ðnÞ
i1;i2;...;in ðA:2Þ

To make q
ðnÞ
i1;i2;...;in symmetric with respect to its indexes,

we write it as

q
ðnÞ
i1;i2;...;inðx; tÞ ¼ �KGðxÞ

Xn
k¼0

ðn� kÞ!
n!

�
X

P i1 ;i2 ;...;in

Yk
j¼1

fijðxÞ
 !

rhðn�kÞ
ikþ1;...;inðx; tÞ

ðA:3Þ

For example,

qð0Þðx; tÞ ¼ �KGðxÞrhð0Þðx; tÞ; ðA:4Þ

q
ð1Þ
i ðx; tÞ ¼ �KGðxÞ½rhð1Þi ðx; tÞ þ firhð0Þðx; tÞ�; ðA:5Þ

q
ð2Þ
ij ðx; tÞ ¼ �KGðxÞ rhð2Þij ðx; tÞ þ

1

2
firhð1Þj ðx; tÞ

�

þ 1
2
fjrhð1Þi ðx; tÞ þ 1

2
fifjrhð0Þðx; tÞ

�
ðA:6Þ

and so on where second summation is over a subset of
the permutations of {i1, i2, . . . , in}, in which repeated
terms are excluded. Because of normality and orthogo-

nality of the set {ni, i = 1,2, � � �}, it is easy to see that
hni1ni2 � � � nini � 0 for odd n, and from (A.2) we have

hq(n)(x, t)i � 0 for odd n. For even n, hq(n)(x, t)i can be
evaluated in a way similar to evaluation of mean head.

Up to fifth-order in rY, the flux is approximated as

qðx; tÞ �
X5
i¼0

qðiÞðx; tÞ ðA:7Þ
which leads to an expression for mean flux

hqðx; tÞi �
X5
i¼0

hqðiÞðx; tÞi

¼ qð0Þðx; tÞ þ
X1
i¼1

q
ð2Þ
ii ðx; tÞ þ 3

X1
i;j¼1

q
ð4Þ
iijjðx; tÞ:

ðA:8Þ

From Eqs. (A.7) and (A.8) one obtains the perturbation

of flux up to fifth-order

q0ðx; tÞ � qðx; tÞ � hqðx; tÞi

¼
X5
i¼1

qðiÞðx; tÞ � hqð2Þðx; tÞi � hqð4Þðx; tÞi; ðA:9Þ

where hqð2Þi ¼
P1

i¼1q
ð2Þ
ii and hqð4Þi ¼ 3

P1
i;j¼1q

ð4Þ
iijj. Eq.

(A.9) together with (A.2) leads directly to (36).
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